Beweise, dass für alle Mengen ´A, B, C, D sube M´ folgende Aussage gilt:
´(A xx B) nn (C xx D) = (A nn C) xx (B nn D)´
Zeige zum Training einzeln ´sube´ und ´supe´.
Zu beweisen: ´(A xx B) nn (C xx D) sube (A nn C) xx (B nn D)´
´(s, t) in (A xx B) nn (C xx D)´ (Definition Schnittmenge) ´=> (s, t) in A xx B ^^ (s, t) in C xx D´ (Definition Kreuzprodukt) ´=> s in A ^^ t in B ^^ s in C ^^ t in D´ (Kommutativität) ´=> s in A ^^ s in C ^^ t in B ^^ t in D´ (Definition Schnittmenge) ´=> s in (A nn C) ^^ t in (B nn D)´ (Definition Kreuzprodukt) ´=> (s, t) in (A nn C) xx (B nn D)´ ´=> (A xx B) nn (C xx D) sube (A nn C) xx (B nn D)´ ´q.e.d.´
Zu beweisen: ´(A xx B) nn (C xx D) supe (A nn C) xx (B nn D)´
´(s, t) in (A nn C) xx (B nn D)´ ´=> s in (A nn C) ^^ t in (B nn D)´ (Definition Kreuzprodukts) ´=> s in A ^^ s in C ^^ t in B ^^ t in D´ (Definition Schnittmenge) ´=> s in A ^^ t in B ^^ s in C ^^ t in D´ (Kommutativität) ´=> (s, t) in (A xx B) ^^ (s, t) in (C xx D)´ (Definition Kreuzprodukt) ´=> (s, t) in (A xx B) nn (C xx D)´ (Definition Schnittmenge) ´=> (A xx B) nn (C xx D) supe (A nn C) xx (B nn D)´ ´q.e.d.´
´(A xx B) nn (C xx D) sube (A nn C) xx (B nn D) ^^ (A xx B) nn (C xx D) supe (A nn C) xx (B nn D)´´=> (A xx B) nn (C xx D) = (A nn C) xx (B nn D)´ ´q.e.d.´
HPI, Mathematik I - Diskrete Strukturen und Logik, Wintersemester 2012/2013
2013-04-12 16:49:14 UTC
2014-07-20 18:22:30 UTC