Beweise für alle Relationen ´T,R,S sube M^2´ folgende Aussage:
´T @ (R uu S) = (T @ R) uu (T @ S)´
Zeige zum Training einzeln ´supe´ und ´sube´.
Zu beweisen: ´T @ (R uu S) sube (T @ R) uu (T @ S)´
´(x, y) in T @ (R uu S)´ (Definition Komposition) ´=> EE z in M : (x, z) in T ^^ (z, y) in R uu S´ (Definition Vereinigung) ´=> EE z in M : (x, z) in T ^^ ((z, y) in R vv (z, y) in S)´ (Distributivität) ´=> EE z in M : ((x, z) in T ^^ (z, y) in R) vv ((x, z) in T ^^ (z, y) in S)´ (Definition Komposition) ´=> ((x, y) in T @ R) vv ((x, y) in T @ S)´ (Definition Vereinigung) ´=> (x, y) in (T @ R) uu (T @ S)´ ´=> T @ (R uu S) sube (T @ R) uu (T @ S)´ ´q.e.d.´
Zu beweisen: ´T @ (R uu S) supe (T @ R) uu (T @ S)´
´(x, y) in (T @ R) uu (T @ S)´ (Definition Vereinigung) ´=> (x, y) in (T @ R) vv (x, y) in (T @ S)´ (Definition Komposition) ´=> EE z_1, z_2 in M : ((x, z_1) in T ^^ (z_1, y) in R) vv ((x, z_2) in T ^^ (z_2, y) in S)´ (´z = (z_1 vv z_2)´) ´=> EE z in M : ((x, z) in T ^^ (z, y) in R) vv ((x, z) in T ^^ (z, y) in S)´ (Distributivität) ´=> EE z in M : (x, z) in T ^^ ((z, y) in R vv (z, y) in S)´ (Definition Vereinigung) ´=> EE z in M : (x, z) in T ^^ ((z, y) in R uu S)´ (Definition Komposition) ´=> (x, y) in T @ (R uu S)´ ´=> T @ (R uu S) supe (T @ R) uu (T @ S)´ ´q.e.d.´
´T @ (R uu S) sube (T @ R) uu (T @ S) ^^ T @ (R uu S) supe (T @ R) uu (T @ S)´´=> T @ (R uu S) = (T @ R) uu (T @ S)´ ´q.e.d.´
HPI, Mathematik I - Diskrete Strukturen und Logik, Wintersemester 2012/2013
2013-04-12 16:49:14 UTC
2014-07-20 18:25:35 UTC