Bei der Herstellung von Smartphones ist mit einem Ausschuss von ´5%´ zu rechnen. Eine Kiste Smartphones enthält 100 Stück.

Berechne den Erwartungswert und die Standardabweichung für die Anzahl der defekten Handys X und die funktionierenden Handys Y

Approach

Es handelt sich um binomial verteilte Zufallsgrößen.

´n = 100´ ´P(X) = p = 0.05´ ´P(Y) = q = 1 - p = 0.95´

´E[X] = n * p = 5´ ´E[Y] = n * q = 95´

´sigma[X]´ ´= sigma[Y]´ ´= sqrt(Var[x])´ ´= sqrt(n * p * q)´ ´= sqrt(100 * 0.05 * 0.95)´ ´= sqrt(4.75)´ ´~~ 2.18´


Solutions
  • sqrt(4.75)

  • ~~ 2.18

  • URL:
  • Language:
  • Subjects: math combinatorics stochastics
  • Type: Calculate
  • Duration: 25min
  • Credits: 2
  • Difficulty: 0.5
  • Tags: hpi
  • Note:
    HPI, Mathematik I - Diskrete Strukturen und Logik, WS 2012/2013, Nr. 40a
  • Created By: adius
  • Created At:
    2013-04-12 16:49:14 UTC
  • Last Modified:
    2014-07-21 09:18:39 UTC