Calculate the following definite integrals:
- ´int_(-2)^(+2) sqrt(4 − x^2) dx´
- ´int_0^pi sin(x) dx´
- ´int_0^1 xe^x dx´
"\nSubtask 1\n\nTake the integral:\n´int sqrt(4-x^2) dx´\nFor the integrand ´sqrt(4-x^2)´, substitute ´x = 2 sin(u)´ and ´dx = 2 cos(u) du´.\nThen ´sqrt(4-x^2) = sqrt(4-4 sin^2(u)) = 2 cos(u)´ and ´u = sin^(-1)(x/2)´:\n´= 4 int cos^2(u) du´\n\nWrite ´cos^2(u)´ as ´1/2 cos(2 u)+1/2´:\n´= 4 int (1/2 cos(2 u)+1/2) du´\n\nIntegrate the sum term by term and factor out constants:\n´= 2 int 1 du+2 int cos(2 u) du´\n\nFor the integrand ´cos(2 u)´, substitute ´s = 2 u´ and ´ds = 2 du´:\n´= int cos(s) ds+2 int 1 du´\n\nThe integral of ´cos(s)´ is ´sin(s)´:\n´= sin(s)+2 int 1 du´\n\nThe integral of ´1 is u´:\n´= sin(s) + 2 u + "constant"´\n\nSubstitute back for ´s = 2 u´:\n´= 2 u + sin(2 u) + "constant"´\n\nApply the double angle formula ´sin(2 u) = 2 cos(u) sin(u)´:\n´= 2 u + 2 sin(u) cos(u) + "constant"´\n\nExpress ´cos(u)´ in terms of ´sin(u)´ using ´cos^2(u) = 1-sin^2(u)´:\n´= 2 u + 2 sin(u) sqrt(1-sin^2(u)) + "constant"´\n\nSubstitute back for ´u = sin^(-1)(x/2)´:\n´= 1/2 sqrt(4-x^2) x + 2 sin^(-1)(x/2) + "constant"´\n\n\n\n´int_(-2)^(+2) sqrt(4 − x^2) dx = (1/2 \* 0 + 2 sin^(-1)(1) + "constant") - (1/2 \* 0 + 2 sin^(-1)(-1) + "constant")´\n´= pi + pi = 2pi´\n\n\nSubtask 2\n\n´int sin(x) dx = -cos(x) + "constant"´\n\n´int_0^pi sin(x) dx = (-cos(pi) + "constant") - (-cos(0) + "constant") = 1 - (-1) = 2´\n\n\nSubtask 3\n\n´int e^x x dx´\n\nFor the integrand ´e^x x´, integrate by parts, ´int f dg = f g - int g d f´, where ´f = x´, ´dg = e^x dx´, ´df = dx´, ´g = e^x´:\n´= e^x x - int e^x dx´\n\nThe integral of ´e^x´ is ´e^x´:\n´= e^x x - e^x + "constant"´\n\nWhich is equal to:\n´= e^x (x-1) + "constant"´\n\n\n´int_0^1 xe^x dx = e^1(1 - 1) - e^0(0 - 1) = 1´"
- ´2pi´
- ´2´
- ´1´
HPI, 2014-05-26, Mathe 2, Aufgabe 30
2014-07-26 15:23:45 UTC
2014-07-26 15:23:45 UTC