Bestimme die folgenden Stammfunktionen (unbestimmte Integrale):
- ´int dx/(x^2 - 1)´
- ´int sin(8x + 4) dx´
- ´int x^2 e^x dx´
Subtask 1
´int 1/(x^2-1) dx´
Factor ´-1´ from the denominator: ´= - int 1/(1-x^2) dx´
The integral of ´1/(1-x^2)´ is ´tanh^(-1)(x)´: ´= -tanh^(-1)(x) + "constant"´
For ´x in RR ^^ -1 < x < 1´this is equivalent to: ´= 1/2 (log(1-x)-log(x+1)) + "constant"´
Subtask 2
´int sin(8 x+4) dx´
For the integrand ´sin(8 x+4)´, substitute ´u = 8 x + 4´ and ´du = 8 dx´: ´= 1/8 int sin(u) du´
The integral of ´sin(u)´ is ´-cos(u)´: ´= -(cos(u))/8 + "constant"´
Substitute back for ´u = 8 x+4´: ´= -1/8 cos(8 x+4) + "constant"´
Subtask 3
´int e^x x^2 dx´
For the integrand ´e^x x^2´, integrate by parts, ´int f dg = f g- int g df´, where ´f = x^2´, ´dg = e^x dx´, ´df = 2 x dx´, ´g = e^x´: ´= e^x x^2-2 int e^x x dx´
For the integrand ´e^x x´, integrate by parts, integral ´f dg = f g- int g df´, where ´f = x´, ´dg = e^x dx´, ´df = dx´, ´g = e^x´: ´= e^x x^2-2 e^x x+2 int e^x dx´
The integral of e^x is e^x: ´= e^x x^2-2 e^x x+2 e^x + "constant"´
´= e^x (x^2-2 x+2) + "constant"´
- ´1/2 (log(1-x)-log(x+1)) + "constant"´
- ´-1/8 cos(8 x+4) + "constant"´
- ´e^x (x^2-2 x+2) + "constant"´
HPI, 2014-05-26, Mathe 2, Aufgabe 31
2014-07-26 15:27:33 UTC
2014-07-26 15:27:33 UTC