Finde alle Paare ´(x,y)´ von ganzen Zahlen, für die ´x >= 0´, ´y >= 0´ sowie ´17x + 13y = 405´ gilt.
Approach
´17x + 13y = 405´ ´17x + 13y = 405 (mod 13)´ ´17x = 405 (mod 13)´ ´4x = 2 (mod 13)´ ´x = 7 (mod 13)´
´x = 13z + 7 (z in ZZ)´
´17(13z + 7) + 13y = 405´ ´17 * 13z + 119 + 13y = 405´ (´-119´) ´17 * 13z + 13y = 286´ (´/13´) ´17z + y = 22´ ´y = 22 - 17z´
Lösung: Alle Paare ´(13z + 7, 22 - 17z)´ mit ´z in ZZ´
´x >= 0´, ´y >= 0´
´13z + 7 >= 0 <=> z >= -7/15´ ´22 - 17z >= 0 <=> z <= 22/17´
´=> -7/13 <= z <= 22/17´ mit ´z in ZZ´ ´=> z = 0, z = 1´
Lösungen: ´(7, 22)´, ´(20, 5)´
Solution
´(7, 22)´, ´(20, 5)´
HPI, 2014-06-10, Mathe 2, Aufgabe 38
2014-07-26 16:54:48 UTC
2014-07-26 16:54:48 UTC