Wir betrachten die Polynome

f(x)=x4+2x3+6x2+2x+5 g(x)=x3+5x2+11x+15

aus [x].

Finde den gcd(f(x),g(x)) und gib ihn in der Form s(x)f(x)+t(x)g(x) mit s(x),t(x)[x] an.

Approach
 (x^4 + 2x^3 + 6x^2  +  2x +  5)/(x^3 + 5x^2 + 11x + 15) = x - 3
-(x^4 + 5x^3 + 11x^2 + 15x)
       -3x^3 -  5x^2 - 13x +  5
     -(-3x^3 - 15x^2 - 33x - 45)
               10x^2 + 20x + 50

Normiert: x2+2x+5 Linearkombination: f(x)=(x-3)g(x)+10(x2+2x+5) x2+2x+5=110(f(x)-(x-3)g(x))

 (x^3 + 5x^2 + 11x + 15)/(x^2 + 2x + 5) = x + 3
-(x^3 + 2x^2 +  5x)
        3x^2 + 6x + 15
      -(3x^2 + 6x + 15)
                     0

gcd(f(x),g(x))=x2+2x+5=110f(x)-(x10-310)g(x)


Solution
  • gcd(f(x),g(x))=x2+2x+5=110f(x)-(x10-310)g(x)

  • URL:
  • Language:
  • Subjects: math
  • Type: Calculate
  • Duration: 25min
  • Credits: 3
  • Difficulty: 0.6
  • Tags: hpi polynomial gcd
  • Note:
    HPI, 2014-06-30, Mathe 2, Aufgabe 49
  • Created By: adius
  • Created At:
    2014-07-26 19:45:28 UTC
  • Last Modified:
    2014-07-26 19:45:28 UTC